Strategies for the Increased Robustness of Ant-Based Clustering
نویسندگان
چکیده
This paper introduces a set of algorithmic modifications that improve the partitioning results obtained with ant-based clustering. Moreover, general parameter settings and a self-adaptation scheme are devised, which afford the algorithm’s robust performance across varying data sets. We study the sensitivity of the resulting algorithm with respect to two distinct, and generally important, features of data sets: (i) unequal-sized clusters and (ii) overlapping clusters. Results are compared to those obtained using k-means, one-dimensional self-organising maps, and average-link agglomerative clustering. The impressive capacity of ant-based clustering to automatically identify the number of clusters in the data is additionally underlined by comparing its performance to that of the Gap statistic.
منابع مشابه
Tabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach
The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...
متن کاملHybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran
Shear wave velocity (Vs) data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp) measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodolo...
متن کاملAn Ant-Colony Optimization Clustering Model for Cellular Automata Routing in Wireless Sensor Networks
High efficient routing is an important issue for the design of wireless sensor network (WSN) protocols to meet the severe hardware and resource constraints. This paper presents an inclusive evolutionary reinforcement method. The proposed approach is a combination of Cellular Automata (CA) and Ant Colony Optimization (ACO) techniques in order to create collision-free trajectories for every agent...
متن کاملAn Adaptive Ant Clustering Algorithm
Enlightened by the behaviors of gregarious ant colonies, an artificial ant movement (AM) model and an adaptive ant clustering (AAC) algorithm for this model are presented. In the algorithm, each ant is treated as an agent to represent a data object. In the AM model, each ant has two states: sleeping state and active state. In the algorithm AAC, the ant’s state is controlled by both a function o...
متن کاملAnt Colony Optimization Algorithm Based on Dynamical Pheromones for Clustering Analysis
This paper presents an improved clustering algorithm with Ant Colony optimization (ACO) based on dynamical pheromones. Pheromone is an important factor for the performance of ACO algorithms. Two strategies based on adaptive pheromones which improved performance are introduced in this paper. One is to adjust the rate of pheromone evaporation dynamically, named as , and the other is to adjust t...
متن کامل